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Abstract 

The videographic simulation algori thm has been further 
developed to enable any distribution or vector correlation 
among atoms or structure variants beyond the first shell. 
The simulation method is applied to NiaMo, Au4Mn and 
Cu3Au in order to describe their real structures above To. 
One of the main advantages of the method is the rapid 
calculation of  the diffraction pattern from the simulated 
videographic structure image (parallel processing). 
Moreover,  the 3D simulation field can be analysed to 
determine the local atomic arrangement or to calculate 
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short-range-order parameters. The method can generally 
be applied to simulate defect or vacancy distributions 
with a specific degree of correlation. 

Introduction 

In order to characterize the local atomic arrangement of  
an alloy above the critical temperature (Tc), the W a r r e n -  
Cowley  short-range-order parameters alton are used 
(Cowley,  1950). 

To assist in the interpretation of the atomic configu- 
ration for the short-range-ordered state of alloys, Gehlen 
& Cohen (1965) conducted computer  simulations based 
on experimental ly measured short-range-order param- 
eters (alton). These Monte  Carlo simulations were 
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performed using the first three arran. In the simulations, 
the positions of the atoms (4000-16000) were first 
selected randomly and then interchanged until the best fit 
was obtained between the experimental and calculated 
values of atmn. A similar procedure involving consider- 
ably shorter computing times was developed by Williams 
(1970). Monte Carlo simulations based on particle 
interactions were also carried out by Golosov & Dudka 
(1973), Polgreen (1985), Gompper & Kroll (1988) and 
Zhu & Zabel (1990). 

More recently, a computer simulation method (the 
videographic method) using combination probabilities 
(W O) to distribute a set of atoms or structure variants in 
order to describe the real structure configuration was 
developed by Rahman (1993a). The method was first 
applied to describe the real structure of Cu3Au at 
different temperatures (Rahman, 1993b, 1994a). An 
essential advantage of the videographic method is the 
possibility of calculating the Fourier transform (diffrac- 
tion pattem) from the simulated videographic real- 
structure image for comparison with experimental 
results. Moreover, in the special case of short-range 
ordering, the atm~ values can be calculated from the 
simulated model and compared with experimental data. 
The determination of the combination probabilities Wij 
used for the distribution of atoms or structure variants 
follow, in this case, a trial-and-error procedure and can 
only be determined empirically. However, the combina- 
tion probabilities are influenced by conditional probabil- 
ities. The conditional probabilities are produced through 
prohibited combinations between structure variants or 
atoms. Hence, a determination of the correct set of Wij is 
somewhat difficult because of the possible differences 
between the input probability values and those calculated 
from the simulation field which includes implicitly the 
conditional probabilities. 

In the present paper, the videographic simulation 
algorithm is further developed to facilitate an easier 
access to any distance correlation (vector correlation) as 
well as combination probabilities and to reduce the 
influence of conditional probabilities. 

The simulation procedure is applied to Ni4Mo, AuaMn 
and Cu3Au to describe the local atomic configuration 
above the critical temperature (Tc). 

Simulation procedure 

In order to simulate a real structure, a certain set of n 
structure variants ~oj(x, y, z) containing one or more atoms 
must be derived from the average structure. These 
structure variants are distributed using a random variable 
J taking the values j ( j =  1 . . . . .  n) with certain 
probabilities determined by the distribution function of 
J (Rahman, 1993a). The distribution function is def'med 
in terms of the combination probabilities Wji for all 
simulation directions as shown in Table 1 for the [100] 

Table 1. Scheme for the combination probabilities in the 
[100] direction 

~o~(x,y,z) q~2(x,y,z) . . .  ~on(x,y,z) 

~ol (x, y, z) WIl WI2 Win 
~2(X, y, Z) W21 W22 W2n 

: 

q)n(x, y, z) Wn, Wn2 Wnn 

direction (j and i are the suffices of the tables or 
stochastic matrices). 

The simulation procedure commences at the centre of 
a three-dimensional simulation field. The first step is the 
random selection of a single structure variant. This 
starting variant S has six neighbouring positions within 
the simulation field to allow a globular growth of the 
simulation field (Fig. 1). During the simulation, almost 
every occupation of a location gives rise to new possible 
locations until the simulation field is completely filled 
with structure variants. 

The evaluation of the combination tables of the 
neighbouring positions of a selected location gives the 
probabilities of the structure variants at this location• The 
selection of a certain structure variant takes place under 
consideration of the probability of combination. Each 
structure variant has six possible direct neighbours 
during the simulation, and hence six combination tables 
(CT[10o], CT[010], CT[ool], CTiioo 1, CTtoio ], CT[0oi]) are 
needed in order to fully describe a certain distribution of 
the q)j(x, y, z). Fig. 1 shows schematically the simulation 
procedure, which is described in more detail by 
Rodewald (1993). In order to explain the relationship 
between the combination tables (CT) in the main 
directions (CTtlool, CTtol01, CTtoo11) and in the opposite 
directions (CTtiool, CTtoiol, CT[ooil) , it is convenient to 
write the combination tables in matrix form: 

f W l l  W 1 2  W 1 3  • . .  W l n  
\ 

J 

W 2 1  W 2 2  W 2 3  " " " W2n 

M = | w31 W 3 2  W 3 3  " " " W3n . 

/ • . . . . . .  " . .  

\ Wn 1 Wn2 Wn3 " " " Wnn 

The matrix of the combination table for the opposite 
direction is the transposed matrix (M 7") of the combina- 
tion possibilities for the corresponding main direction. 

In some cases, especially when short-range ordering is 
present, it is difficult to influence a certain preference 
between two structure variants or atoms beyond the first 
or second shell using the combination tables. This 
problem occurs particularly in directions with mixed 
indices (e.g. [211], [321]). In order to avoid these 
difficulties, the combination probabilities given in Table 
1 can be manipulated by introducing a set of correlation 
vectors that controls the probability of any desired 
combination behind the first shell during the simulation 
procedure. With the aid of a correlation vector Vlmn, a 
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structure variant A at the position (u, v, w) can directly 
influence the probability of a structure variant B at the 
position (u + l, v + m, w + n) within the simulation 
field (Fig. 1). Therefore, the probability W that a certain 
structure variant ~0 of type j is present at the position 
(u, v, w) is the product of the sum of the probabilities of 
the combination tables at this position and the influence 
factors Klmn of all valid correlation vectors Vtm, at this 
position (Rodewald, 1993): 

W = Kv(ll°°]Wu_lvw + [i°°]Wu+lvw + l°l°]Wuv_lw 

-4- [OiOlWuv+l w -J- [°°llWuvw_ 1 -t- l ° ° i l W u v w + l )  , 

(1) 

where Kv is the product of the influence factors Ktrnn of 
all interacting correlation vectors Vtmn at the position 
(u, v, w) and [l°°]Wu_~w is the probability that a structure 
variant q9 of type j occurs, as derived from the 
corresponding combination table (CT[loo]) evaluated at 
the position (u - 1, v, w). 

In order to illustrate the effect of reducing the 
influence of the conditional probabilities, a two-dimen- 
sional simulation of disordered CusAu was performed as 
an example. The corresponding four structure variants 
qoj(x,y) used for the simulation are presented in a 
previous paper (Rahman, 1993b). The input values of 
the combination probabilities Wji for the distribution of 
the four structure variants are given in Table 2 column 
(a) for the [010] direction. The probabilities calculated 
from the two-dimensional simulation field together with 
those calculated with the inclusion of the influence factor 
Kt,,,, in the simulation (1) are given in Table 2, columns 
(b) and (c), respectively. 

Although the input values W13, W24, W31 and W4: are 
set to 1% [Table 2, column (a)], the resulting values in 
the simulation are 14% [Table 2, column (b)]. This 
indicates a considerable preference in the simulation for 
such combinations. By comparison of the input and 
output probability values [columns (a) and (c)], it is 
observed that the output data calculated by the new 

vo,: / / / / / / /  

Fig. 1. Schematic illustration of  the simulation procedure (S" starting 
variant, Vtm, correlation vector). 

Table 2. Combination probabilities (%) 

(a) Input data, (b) probabilities calculated in the simulation with the 
input data (without correction) and (c) values calculated in the 
simulation with the new procedure. 

(a) (b) (c) 
1 2 3 4 1 2 3 4 1 2 3 4 

1 0 74 1 25 0 62 14 24 0 72 3 25 
2 74 0 25 1 62 0 24 14 72 0 25 3 
3 1 25 0 74 14 24 0 62 3 25 0 72 
4 25 1 74 0 24 14 62 0 25 3 72 0 

simulation algorithm are in much closer agreement with 
the input data and hence represent more realistic values. 

In order to simulate short-range ordering in an AB 
alloy, the experimental short-range-order parameters a~m, 
(4) can be used to derive the influence factors Ktmn for 
the correlation vectors connecting two atoms of type A 
(ma and mB are the atomic fractions of A and B atoms in 
the alloy): 

Klmn --" [1 - (1 - Ottmn)mB]/ma. (2) 

The real 'structure' image S(U, V, W) resulting from a 
three-dimensional simulation using combination prob- 
abilities Wji [Table 1 and equation (1)] and correlation 
vectors can be expressed as (Rahman, 1993a) 

U V W 

s(u, v, w) = E E E (3) 
u v w 

where (u, v, w) are integers, ~Ou~(Juvw) is the structure 
variant of type J at the uvw position and Ju~w is the 
random variable for the uvw position. Different distribu- 
tions of ~0j can be obtained by varying the values of W 
(1). Based on the principles of the videographhic 
simulation method (Rahman, 1993a), the structure 
variants qgj(x, y, z) were replaced by picture elements 
with different grey levels. The resulting simulation of (3) 
can be immediately displayed and stored as a videograpic 
image. To check the result of a simulation, the Fourier 
transform of the real structure image S(U, V, W) is 
compared with the experimental diffraction pattern. 
Moreover, it is possible to evaluate the three-dimen- 
sional short-range-order parameters from the simulated 
three-dimensional model. In contrast to Gehlen & Cohen 
(1965) and Williams (1970), the simulation field is not 
obtained by fitting the short-range-order parameters to 
those obtained from the experiment. In the present 
procedure, the main control of a simulation is based on a 
comparison between the diffuse scattering (shape, 
position and intensity) calculated from the videographic 
structure image and the experimental diffraction patterns 
(intensity contour map). Significant errors in the 
experimental values of atm~ result in changes of the 
diffuse intensity distribution of the simulated diffraction 
pattern compared with the experimental diffraction 
pattern and are therefore conspicuous. Moreover, the 
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capacity of the applied computer hardware and software 
enables simulations to be carded out involving up to 
several million atoms. 

Examples 
To demonstrate the validity of the above-described 
simulation procedure, the method was applied to 
simulate short-range ordering for NiaMo, Aualk'in and 
Cu3Au above Tc. These binary f.c.c, alloys were chosen 
because their short-range-order parameters have been 
accurately determined by several authors for the short- 
range-ordered state [Ni4Mo: Chakravarti, Starke, Sparks 
& Williams (1974); Au4Mn: Fuernrohr, Epperson & 
Gerold (1980), Suzuki, Harada, Nakashima & Adachi 
(1982); Cu3Au: Cowley (1950), Moss (1964), Chen, 
Comostock & Cohen (1979)]. 

The short-range-order parameter aim, can be defined in 
terms of the probability Ptm, that an atom with 
coordinates lmn with respect to an A atom is also an A 
atom (Cowley, 1950): 

atmn = 1 - (1 - Ptmn)/mB. (4) 

The first set of influence factors Ktm,, for the correlation 
vectors used in the simulation were determined using the 
first six alton (2). The calculated values of Plmn and Kin n 

are given in Table 3. 
The structure variants, which contain in this case one 

atom, are modelled as picture elements for the 
videographic simulation as shown in Fig. 2(a) (Rah- 
man, 1993a). The atom-free sequence is used to enable 
the videographic representation of the sites of the f.c.c. 
lattice as schematically demonstrated in Fig. 2(b). The 
dimension of the atomic sequences is equal to the unit 
length of the short-range-order vector rtm,. 

The three-dimensional simulation containing 
8 x 105 atoms was undertaken using combination 
probability tables that generate a real structure image of 
a statistical distribution of two different atoms on the 
sites of a f.c.c, lattice. The combination probabilities 
shown in Table 4 are therefore identical for all six 

(a) 

(b) 

A-type B-~pe atom 
tree 

1 2 3 

0 0 • 
• • 

0 0 • 

O 

0 1/2 

Fig. 2. (a) Structure elements ('atoms') for the videographie simulation, 
and (b) structure elements occupying the sites of a f.c.c, lattice. 

Table 3. Calculated values of the probabilities Plmn and 
the resulting influence factors Klmn 

atmn from Chakravarti et al. (1974), for Ni4Mo quenched from above 
To; Fuemrohr et al. (1980) for Au4Mn quenched from 873 K; and Chen 
et al. (1979) for Cu3Au at 669 K. 

lmn PMo-Mo KMo-Mo PMn-Mn KMn-Mn PAu-Au gAu-Au 

110 0.0368 0.184 0.0392 0.196 0.118 0.472 
200 0.1920 0.960 0.3672 1.826 0.411 1.642 
211 0.2912 1.456 0.2416 1.224 0.254 1.015 
220 0.1424 0.712 0.1960 0.944 0.297 1.186 
310 0.1488 0.744 0.1368 0.672 0.191 0.763 
222 0.1016 0.508 0.1224 0.560 0.267 1.066 

Table 4. Scheme for the three-dimensional combination 
probabilities for the structure variants shown in Fig. 2(a) 

~ol(x,y,z) ~ o 2 ( x , y , z )  ~(x ,y ,z)  

~01 (X, y, z) 0% 0% 100% 
tp2(x, y, z) 0% 0% 100% 
~(x,  y, z) W31 14132 0% 

directions. The values of W31 and W32 are used to adjust 
the chemical composition of the simulated binary ahoy. 
The preference of certain combinations between two 
atoms is taken into account during the simulation by 
applying the influence factors K given in Table 3. 

The Fourier transforms [(h/d)) plane] of the three- 
dimensional simulations for Ni4Mo, Au4Mn and CuaAu 
are shown in Fig. 3. A comparison between the 
calculated diffraction pattern and the intensity contour 
map for the short-range-order state measured by several 
authors [Ni4Mo: Chakravarti, Starke, Sparks & Williams 
(1974); Au4Mn: Fuernrohr, Epperson & Gerold (1980); 
C u 3 A u :  Cowley (1950)] shows quite a good agreement 
in relation to the characteristic distributions of the diffuse 
scattering. 

In order to characterize the local atomic arrangement 
of the three alloys, a portion of the first two atomic layers 
of the videographic image simulations is shown in Fig. 4. 
The atoms are represented as picture elements (pixels) 
with different grey levels to model their scattering 
behaviour. The real structure above Tc can be described 
as follows: in the case of Ni4Mo, the structure is not 
comprised of a distribution of microdomains of the 
ordered structure Dla (14/m) as proposed by some 
authors (e.g. Saburi, Kanai & Nenno, 1974). Instead, 
Ni4Mo contains small domains of the D022-type 
(14/mmm) and only fragments of Dla-type domains 
(Fig. 4). The distribution of the two domain types leads 
to the characteristic shape of the diffuse intensities. These 
results are in accordance with a suggestion proposed by 
Van Tendeloo & Amelinckx (1985). 

The diffuse intensity distributions in the reciprocal 
space of Ni4Mo and AunMn are similar. In the case of 
Au4Mn, the diffuse maxima are slightly elongated 
towards the main directions (Fig. 3). The AunMn 
structure contains microdomains of type L/2 (Pm3m) in 
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Fig. 3. Fourier transforms [(hk0) planes] of the three-dimensional 
simulations (a) Ni4Mo, (b) Au4Mn and (c) Cu3Au. 

Fig. 4. Sections of the first two atomic layers of the videographic 
simulations. Several features of the local atomic configuration are 
circled in the figures. (a) Ni4Mo, (b) Au4Mn and (c) Cu3Au. The 
grey levels of the pixels are proportional to the atomic number. 
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Table 5. Experimental (exp.) and calculated (sim.) atmn 
values; the experimental data were taken f rom the same 

authors as cited in Table 2 

Ni4Mo AunMn Cu3Au 
alton alton alton alton alton alton 

lmn (exp.) (sire.) (exp.)  (s im.)  (exp.)  (sim.) 

110 --0.204 - -0 .157  - -0 .201 - -0 .161 --0.176 --0.162 
200 --0.010 0.021 0.207 0.217 0.214 0.224 
211 0.114 0.108 0.056 0.042 0.005 0.017 
220 --0.072 - -0 .079  - -0 .014  --0.001 0.062 0.093 
310 --0.064 - -0 .058  - -0 .082  --0.104 - -0 .079  --0.085 
222 - -0 .123 --0.160 --0.110 --0.131 0.022 0.021 
321 0.034 0.022 0.035 0.020 --0.010 --0.013 
400 0.110 0.111 0.116 0.133 0.073 0.091 
330 0.005 --0.069 - -0 .043  --0.054 --0.030 --0.033 
411 --0.046 --0.039 0.000 --0.006 0.026 0.028 
420 0.035 0.030 0.012 0.026 0.034 0.042 
332 0.013 0.030 0.012 0.021 --0.010 -0.003 

addition to the incomplete fragments of type Dla  and 
those of type D022. 

The situation is quite different for Cu3Au. The real 
structure just above Tc primarily contains two-dimen- 
sional microdomains of type L/2 with a certain size 
distribution, approximately ranging between 1 and 6 unit 
cells. Although microdomains of type D022 or fragments 
thereof are also present, the proportion of these is less 
than in Ni4Mo. The microdomains in all three alloys are 
embedded in a more-or-less-disordered matrix. 

In order to compare the short-range-order parameters 
with the experimental results, atmn values were calculated 
from the 3D simulations and are presented in Table 5. 
Good agreement is obtained between the experimental 
and calculated al, n,, values except for a110 in the case of 
Ni4Mo and Au4Mn. This poor agreement is probably due 
to the difficulties of data correction, especially in the case 
for the nearest neighbours (an0), as clearly pointed out 
by Hayakawa, Bardhan & Cohen (1975). In this context, 
it must be also noted that the almn parameters calculated 
by the method of Gehlen & Cohen (1965) show, in any 
case, a better agreement because of the special type of 
simulation procedure which performs a fit between 
experimental and calculated atmn values. Both the 
experimental and calculated values of a200 and a211 
exhibit a remarkable behaviour. In the case of AuaMn 
and Cu3Au, the values of a200 are much larger than in the 
case of Ni4Mo. In contrast to this, the values of a211 for 
Au4Mn and Cu3Au are smaller than those for Ni4Mo. 
These facts are consistent with an increased generation of 
D022-type domains and fragments of Dla-type domains 
during the short-range-order state of Ni4Mo. The larger 
values of a200 in the case of Au4Mn and Cu3Au 
correspond to the generation of L/2-type domains, 
which are rarely found in Ni4Mo. 

A structural interpretation using the alton values is in 
this case possible because the described structures are 
visible in the videographic simulations, which are proven 
to be correct by the good agreement between their 
Fourier transforms and the experimentally measured 

diffuse diffraction intensities. A structural interpretation 
based only on the values of the short-range-order 
coefficients is not sufficient because each short-range- 
order coefficient represents a correlation length (Patter- 
son function) which may correspond to different 
structure models. 

The presented simulation procedure is also suitable for 
the structural characterization of defect distributions in 
crystal structures. A possible application is the correla- 
tion-vector-based description of the oxygen vacancy 
distribution in mullite, which obeys a certain ordering 
scheme (Rahman & Paulmann, 1991; Paulmann, Rah- 
man & Weichert, 1992; Butler, Welberry & Withers, 
1993; Rahman, 1994b). Moreover, it is also possible to 
convert the simulated videographic structure images into 
floating-point atomic coordinates (Rahman & Rodewald, 
1991; Rodewald & Rahman, 1992) to enable image- 
contrast simulations to be carded out for interpreting the 
HREM images of a disordered structure. 
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